

Pneumologie

Einfluss Umweltbelastung und Klima auf Lungengesundheit

Oster-Seminar-Kongress, Brixen 2024

Bianca Schaub Prof. Dr. med. univ. Dr. von Haunersches Kinderspital

Temperaturveränderungen weltweit: 1901-2018

"Warming stripes"

Nach Ed Hawkins, climate scientist at University of Reading Climate Lab Book (21 July 2019).

Kinder von 2020 im Vgl. zu 1960 – Unterschiede der lebenslangen Exposition zu Extrem-Ereignissen (Pariser Klimaabkommen: 1.5 Grad Ziel)

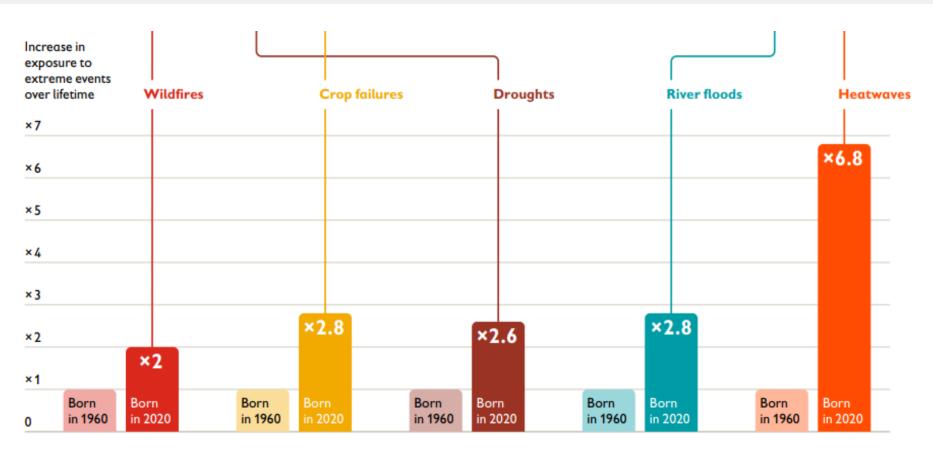
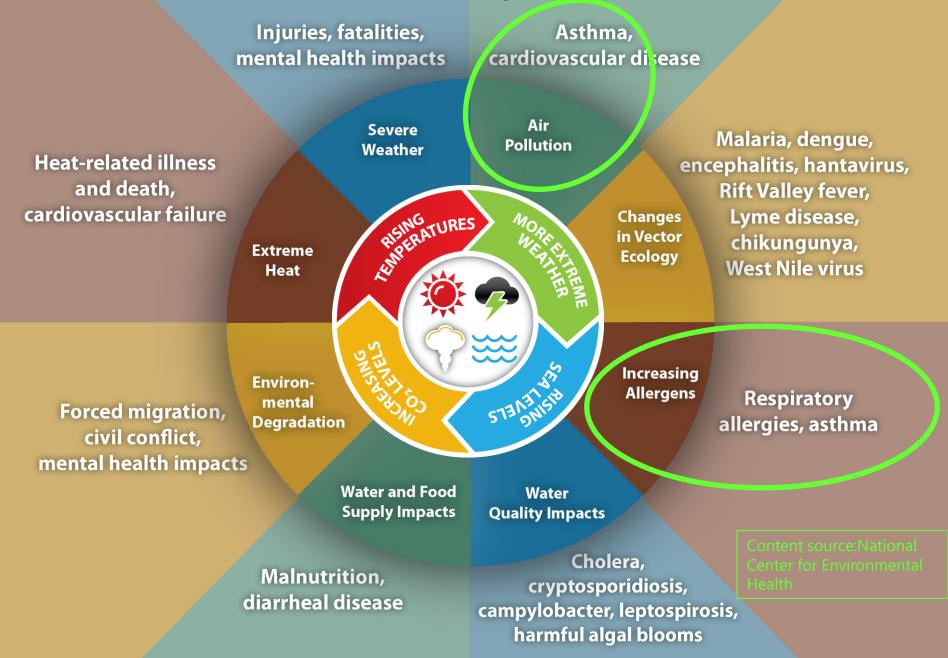



Figure 1
Lifetime exposure to extreme events under
Paris Agreement pledges for children born in
2020 compared to that of a person born in 1960

Impact of Climate Change on Human Health

Umweltbelastung und Klima und...

Luftschadstoffe, Temperatur, Wetter,

und deren Effekt auf.....

- > Asthma, Asthma Exazerbationen
- ➤ Allergische Rhinitis/Konjunktivitis
- > Gewitterasthma
- ➤ Und noch mehr.....

Relevante Luftschadstoffe

- 1. Ozon = O_3 eher kurzfristige Effekte / ausgeprägt
- 2. Stickoxide = NO_x v.a. durch Diesel
- **3. Feinstäube** *particulate matter* = **PM10**, **PM2.5** mittel /langfristige Effekte
 - * Straßenverkehr (Auspuffabgase, Bremsen, Reifenabrieb)
 - * Kaminöfen, Heizungen
 - * Heizwerke, Metall-, Stahlerzeugung
 - * Feinstaub (sekundär z.B. aus SO₂ u. Ammoniak=NH₂)
 - * Waldbrände
- 4. VOC (flüchtige organische Stoffe), CO (Kohlenmonoxid)
- 5. Toxische Verbrennungsprodukte
 - * aus Waldbränden, wild/bushfire z.B. Rußpartikel

Umweltverschmutzung und Lungenschäden

Internationales Umwelt- Kommittee Schraufnagel et al. Chest, 2018 Nov 9

Oxidativer Stress

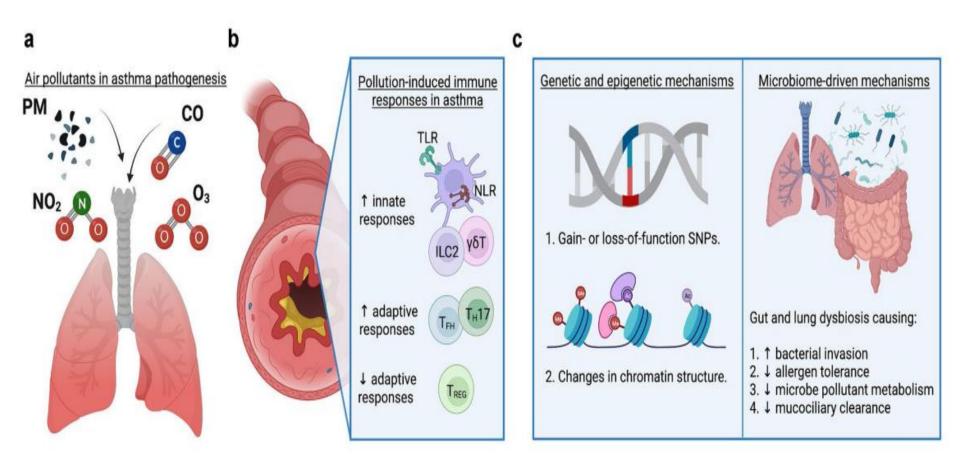
- Lipidperoxidation, \lambda Antioxidantien
- Entzündung (CrP, Fibrinogen, Leukozyten ↑)
- ↑ Adhäsion, Viskosität, Zytokine
- Veränderung Endothel

Direkte Effekte des Immunsystens (angeboren/erworben)

- \ \ \ Interferon g
- Veränderung von Th1, Th2 Zellen

Genetische Regulation von Entzündung

- Glutathion Synthese
- Angeborene Immunität: Toll-like Rezeptoren, Wachstumsfaktoren


Epigenetische Regulation

- miRNA
- DNA Methylierung
- Histon Acetylierung

Einfluss der Umweltschadstoffe - neue immunvermittelte Mechanismen beim Asthma

Zunehmender Einfluss von Luftqualität auf Lungenerkrankungen

- ➤ Ablagerung von feinen Partikeln (PM2.5) in den kleinen Atemwegen
- Epigenetische Regulation: kann benigne u. maligne Lungenerkrankungen verursachen
- ➤ Weitere Schadstoffkonzentrationen werden erhöht
- Allergenkonzentrationen ↑↑
- Veränderung des Allergenspektrums,Pollenmenge u. Dauer: längerer Zeitraum
- Zunahme der Allergenität bei einigen Pollen und der Zusammensetzung

Effekt von Klimaveränderung auf Lungengesundheit von Kindern

- ➤ Simulationen: pro kg KG hat ein Kind 4x höhere Dosis der Partikel in Atemwegen
- Mehr *outdoor*: 50% längere Pollensaison,8 % höhere Pollenkonzentration
- Neue Pollenverteilung, zusammen mit höherer Temp., u. veränderter Biodiversität
- ➤ ↑Exposition: NM-Allergene, Inhalationsallergene
- Exposition: epigenetische Veränderungen über längeren Zeitraum

Globale Belastung durch Umweltverschmutzung für Asthma

- ➤ 2019, chronisch respiratorische Erkrankungen: dritthäufigste Todesursache Prävalenz von 454.6 Mio Fällen (417.4–499.1) weltweit
- ➤ **Asthma:** 262.4 Mio (224.1–309.5) Prävalenz, Gesamtfälle altersstandardisiert geringer
- ➤ Disability-adjusted life years (DALYs):
 - durch 1) Rauchen
 - 2) Umweltverschmutzung
 - 3) Arbeitsexposition
- > Hohe Temperatur und erhöhter BMI als zusätzliche Risiken

Rolle der Umweltschadstoffe

European Lung White Book, 2003 (ERS)

WHO Publikation: Luftverschmutzung und Kindergesundheit

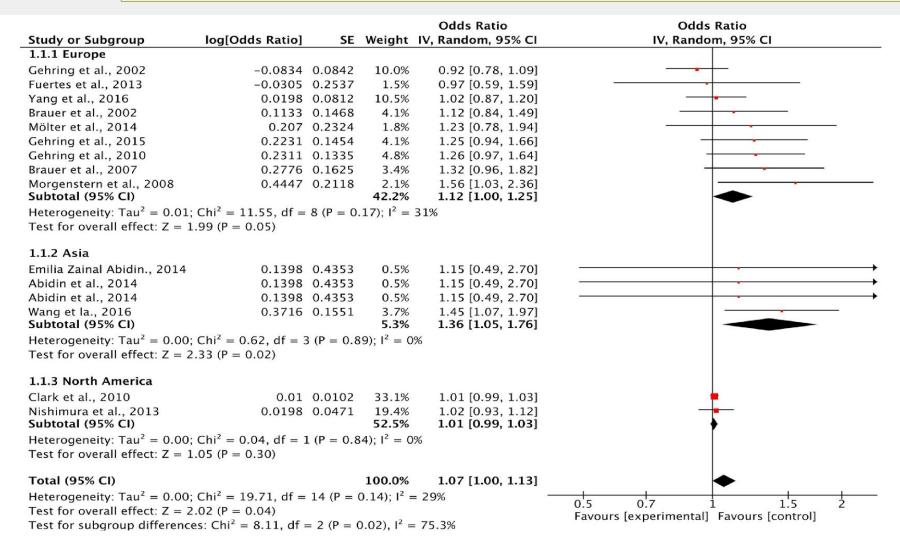
- Ca. 15 % der Asthma-Erkrankung bei Kindern weltweit aufgrund von Umweltschadstoffen
- > Ca. 15 % Exazerbationen von Asthma aufgrund von Umweltschadstoffen
- Studien mit Kindern: NO2– Konzentration >20 μg/m³ in der Außenluft
 † Hospitalisierungen schwere untere Atemwegsinfektionen, Folgeerkrankungen der Lunge / Atemwege
- ➤ Vilnius Deklaration für chronische Atemwegserkrankungen Kampf gegen Luftverschmutzung EU Gesundheitsstrategie
 - Valiulis et al. Clin Transl Allergy. 2019 Jan 28;9:7
- ➤ Bestätigt durch MUPPITS1- u ICATA Kohorten (USA): > 600 Kinder: Luftverschmutzung als unabhängiger Risikofaktor für Asthma Exazerbationen (nicht-viral) bei Kindern in Städten (USA), reduzierte Lungenfunktion, unabhängig von Infekten

Altman et al. Lancet Planet Health. 2023 Jan;7(1):e33-e44.

WHO Air pollution and childrens health: Okt. 2018, WHO ref number: WHO/CED/PHE/18.01 WHO Air pollution: March 2024, https://www.who.int/health-topics/air-pollution

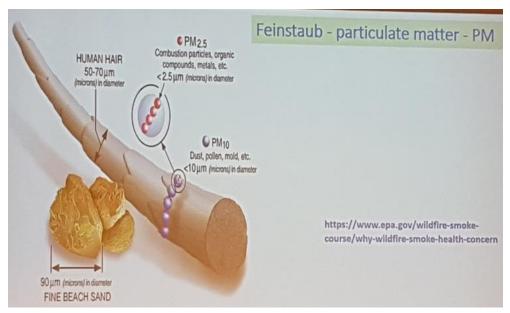
https://www.rki.de/DE/Content/GesundAZ/K/Klimawandel_Gesundheit/KlimGesundAkt.html

https://www.ersnet.org/the-european-lung-white-book/



Die ersten 1000 Tage: Verkehr und erhöhtes Risiko für Wheeze und Asthma im Kindesalter

- Systemat. Review von Geburtskohorten, 1/2000-5/2020
- 9681 Berichte: 26 Studien mit 21 Kohorten inkludiert, meist PM u NOx
- 10 Kohorten: Exposition in der Schwangerschaft konsistent erhöhtes
 Risiko für Asthma (besonders 2. Trimenon), für wheeze nicht klar
- Erste Lebensjahre **erhöhtes Risiko für Asthma** (PM: 7/10 Studien; NOx 11/13 Studien), für *wheeze* nicht sicher

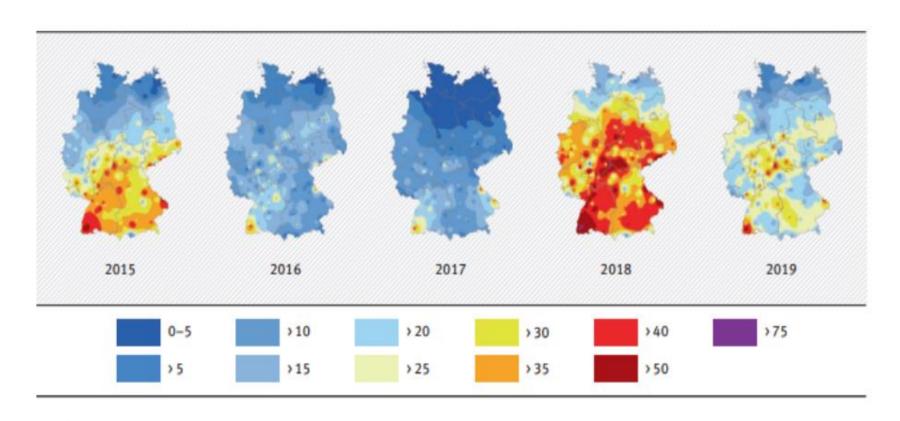

Verkehr und erhöhtes Risiko für Asthma im Kindesalter

Verkehr – einzelne Komponenten

- PM2.5 (meta-OR = 1.07, 95% CI:1.00–1.13),
- NO2 (meta-OR = **1.11**, 95% CI:1.06–1.17), Benzene (meta-OR: 1.21, 95% CI:1.13–1.29)
- TVOC, "totale volatile organische *Pollutants*" (meta-OR:**1.06**, 95% CI: 1.03–1.10).

Umweltverschmutzung und Asthma, Rhinitis und Lungenfunktion bei Erwachsenen

- RHINESSA-Studie, Norwegen/Schweden, N=3428 Teilnehmer, NO2, Partikelgröße (PM10, PM2.5), Ruß (black carbone, BC), Ozon (O3), "greenness" (Vegetations-index, NDVI) in bestimmten Zeitfenstern: 0–10 J, 10–18 J, Lebenszeit, Erwachsenenalter
- Arztdiagnose Asthma Exazerbation (12 M), Rhinitis, reduzierte Lungenfunktion (z-scores FEV1, FVC, FEV1/FVC < 1.64)
- Exposition zu Umweltverschmutzung im Kindesalter, Adoleszenz und Erwachsenenalter → erhöhtes Risiko für Asthma Exazerbationen, Rhinitis, reduzierte Lungenfunktion im Erwachsenenalter (OR 1.29 bis 2.25).
- "Greenness" nicht mit Asthma o. Rhinitis assoziiert, aber Risiko für reduzierte Lungenfunktion (OR 1.39-1.74).



Ozon und Langzeiteffekte auf die Lungengesundheit

- ➤ Kinder bis zum 12. LJ: Lungenwachstum reduziert
- ➤ Jugendliche /Erwachsene: Lungenfunktion eingeschränkt
- Verschlechterung eines Asthma bronchiale
- → ↑ COPD (Schäden Elastizität, vorzeitige Gewebsalterung)
- ➤ ↑ Atemwegserkrankungen, ↑ Krankenhaus-Einweisungen
- Langzeitbelastung: Erhöhte Sterblichkeit an Atemwegserkrankungen

Räumliche Verteilung der Anzahl der Tage mit Überschreitungen des 120 $\mu g/m3$ Schwellenwertes

Quelle: UBA, 2020

Effekt von Ozonexposition auf **Asthmaexazerbationen**

Relative risk (95% CI) of asthma exacerbations

DTR

1.057 (1.036 to 1.078)

1.078 (1.041 to 1.118)

1.016 (1.000 to 1.032)

HRV

Tree

Ozone

1.139 (1.101 to 1.177) (1.012 to 1.076)

1.042

1.014 (1.004 to 1.024)

1.141 (1.075 to 1.213) (1.016 to 1.036) 1.137

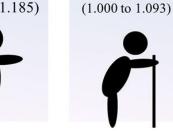
1.026

(1.091 to 1.185)

Adults

DTR, diurnal temperature range; HRV, human rhinovirus.

Infants


1.115

(1.075 to 1.157)

1.056

(1.032 to 1.081)

Elderly

1.046

Was sagt die Leitlinie

Kopp et al. S3 Guideline Allergy prevention, Allergol Select 2022, 6: 61-97. www.awmf.org.

Auch aktuelle Arbeiten stützen die Empfehlungen zu Luftschadstoffen:

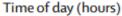
- Die aktive und passive Exposition gegenüber Tabakrauch erhöhen das Allergierisiko und sind deshalb zu vermeiden.
- Die Exposition gegenüber Stickoxiden, Ozon und kleinen Partikeln (PM 2,5) ist mit einem erhöhten Risiko, besonders für Asthma, verbunden.
- Daher sollte die Exposition gegenüber Emissionen gegenüber Stickoxiden, Ozon und kleinen Partikeln (PM 2,5) gering gehalten werden.

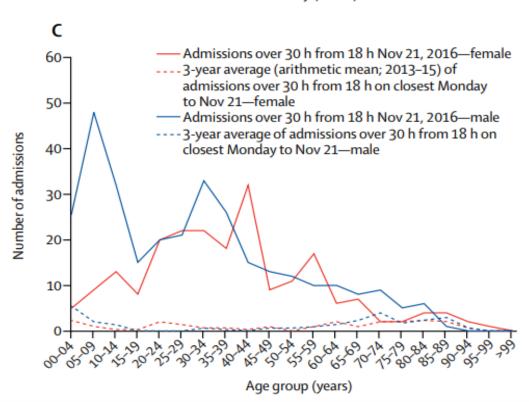
Die Autor:innen dieser Leitlinie sprechen sich einhellig für den Erlass entsprechender Verordnungen zur Minimierung dieser Luftschadstoffe aus.

Epidemiologische Evidenz

- Exposition zu Bränden ("wildfire smoke")

- > Asthma:
- * Hospitalisierung
- * Asthma Notaufnahme Vorstellung
- * Symptome
- * Neuauftreten


- > Respir. Infektionen
- > Lungenkrebs
- ➤ Respir. Mortalität: 8.7 Mio vorzeitige Todesfälle

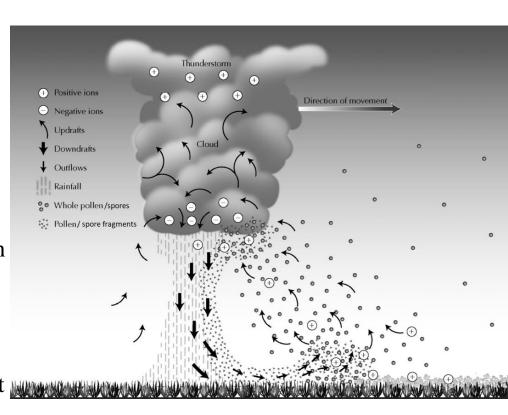

> COPD:

- * Hospitalisierung
- * Asthma Notaufnahme Vorstellung
- * Symptome
- * Neuauftreten

Melbourne Gewitter: 21.11.2018 Gewitterasthma – "thunderstorm asthma"

Stationäre Aufnahmen wg. Asthma innerhalb von 30h Peak bei Kindern (männl)

Nachuntersuchungen über 5 Jahre nach Gewitterasthma in Australien: Asthmasymptome


Fig. 3. Frequency of asthma symptoms as reported at yearly intervals from 2017–2021 in substudy cohort with complete data (n = 30).

Huang F et al. Asia Pac Allergy. 2022 Oct 27;12(4):e38.

Gewitterasthma – "thunderstorm asthma"

- Größtes Risiko: im Frühjahr undSommer
- Wärme und Trockenheit: asthmaauslösenden Pollen steigen nach oben.
- Gewitter: starke Fallwinde große
 Mengen dieser allergenen Pollen aus den oberen Luftregionen werden Richtung
 Boden transportiert
- Pollen saugen sich bei heftigem Regen mitWasser voll
- Zerplatzen, u. Freisetzen kleinster Allergene

Kevat et al. Thunderstorm Asthma: Looking Back and Looking Forward, Journal of Asthma and Allergy, 293-299, 2020.

Gewitterasthma - ,thunderstorm asthma"

- ➤ Bereits auch 1-2h vor Gewitter Zerplatzen aufgrund osmot. Schocks (Wärme, elektrostatische Aufladung, Feuchtigkeit)
- ➤ Allergene binden auch an Feinstäube
- ➤ Einatmung: in kleinste Bronchien
- Freisetzung von PALMS: pollenassoziierten Lipidmediatoren -Wirkungsverstärkung
- > Bei Asthmatikern wie auch Gesunden Gewitterasthma mit Asthmaanfall
- > Oft Jugendliche/junge Erw. mit vorher wenig Symptomen
- > Selten Dauertherapie, meist kein Notfallspray

Wiesbaden - 11. Mai 2022

- ➤ 40 Schüler einer Gesamtschule klagen über Atemnot, Reizung der Augen und Nase
- Reizgas Unfall vermutet
- Symptome nach Verlassen der Schule zunehmend
- Großeinsatz Polizei, Feuerwehr, Rettungsdienst
- > Schule in Nähe eines Industriegebiets, keine Fremdgaseinwirkung/ Schadstoffe festgestellt
- ➤ Kinderpneumologe wird von der Feuerwehr zum Einsatzort gebracht
- Was ist passiert?

Wiesbaden - 11. Mai 2022

> 25 Kinder /Jugendliche: stationäre Diagnostik und Therapie

> Symptome:

- * Hyperventilation
- * Reizhusten
- * Dyspnoe
- * Brennen im Hals
- * Kopfschmerzen
- * Konjunktivale Reizung
- * Fremdkörpergefühl

- * Beutel Rückatmung bei Hyperventilation (n=6)
- * Lorazepam (6)
- * Salbutamol Inhalation

Pixabay.com

Wiesbaden - 11. Mai 2022

Besonderes Klima:

- ➤ Temp: 29 C, sehr trocken, Windböen bis 50 km/h
- ➤ Geschlossener Schulhof
- **Erste Symptome:** Im Klassenzimmer bei geöffnetem Fenster
- > Dichte Bepflanzung mit hohen alten Platanen

Platanenhusten durch Irritantien – spiky hairs

Trichome: feinste spitze Härchen, Sternhaar

Auf der Unterseite junger Platanenblätter, auf Knospen

(=Irritantien, keine Allergene)

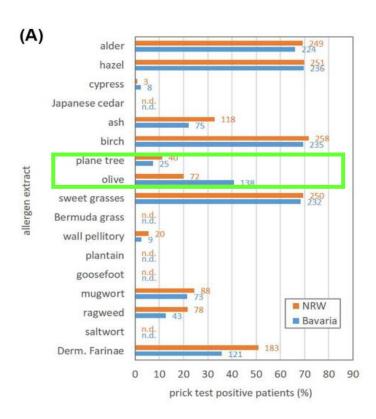
Symptome:

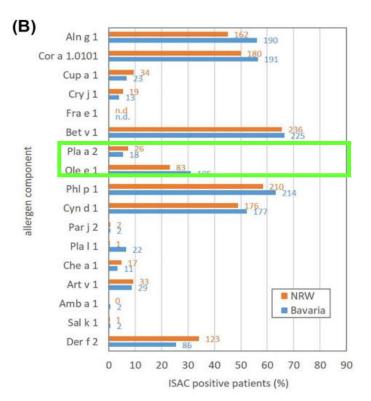
- Mechanische Reizung von Konjunktiven, Schleimhäute
- Kontaktdermatitis
- Hustenreiz bei Einatmung

Bei Trockenheit/Wind:

Abbrechen, Verwirbelung, hohe lokale Partikelkonzentration

Thc.farmer.com


Platanenhusten vs Platanenallergie



Sensibilisierung in D: 5-11%

➤ Blütezeit: April-Mai (in Australien: Aug bis Okt)

> Trichome: Mai- Juli

Prävention von Platanenhusten

➤ Abhängig von Umgebung: Trockenheit, Wärme, Wind

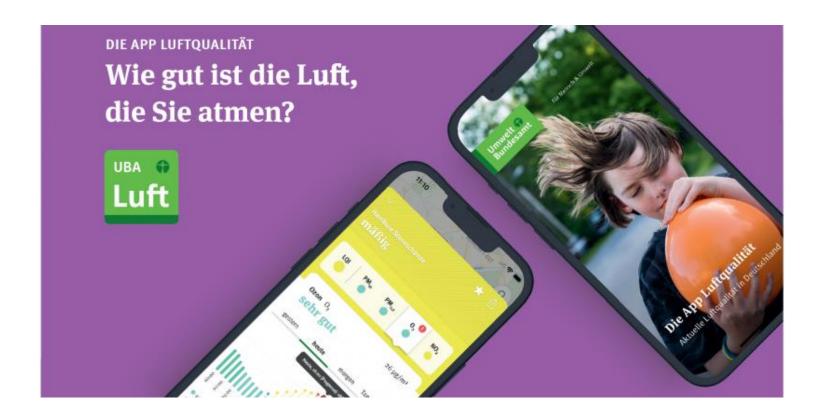
Individuell:

- Exposition im Frühjahr beobachten
- ➤ Haut- und Schleimhautkontakt vermeiden
- Schutzbrille u. -maske bei Exposition (z.B. Baumpfleger)
- Blätter / Äste absaugen (nicht fegen)

Allg:

- Präventive Städteplanung /urbane Bepflanzung
- Saisonales Besprühen von Bäumen in kritischer Umgebung (z.B. Schulen) mit Apfel-Pektin-Wasser-Gemisch

Trichome:
Biofilter für
Luftschadstoffe



Thc.farmer.com

KLINIKUM DER UNIVERSITÄT MÜNCHEN

Fazit für Klinik und Praxis

Annesi-Maesano, J Allergy Clin Immunol 2021;148:70-2.

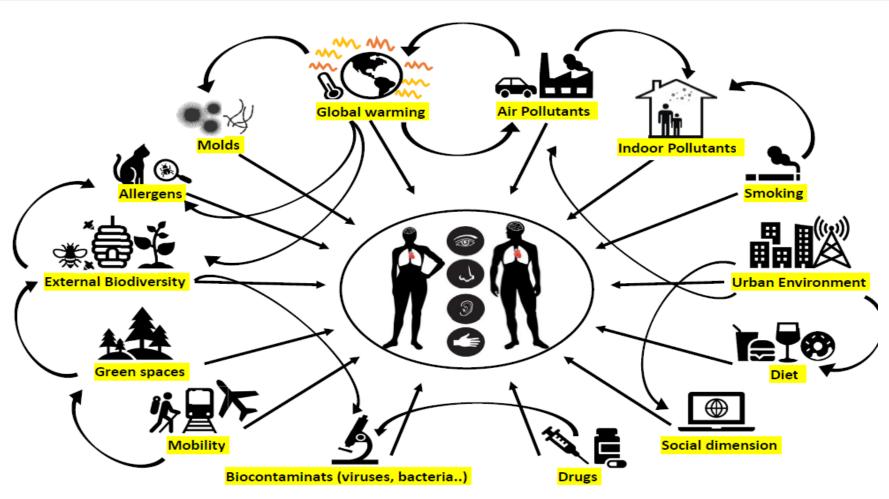


FIG 1. The surrounding environment involved in asthma and allergy.

KLINIKUM DER UNIVERSITÄT MÜNCHEN

Maßnahmen – Was können wir tun?

Content source: National Center for Environmental Health

Beratung von Familien zur Lungengesundheit

- * Beratung zur Vermeidung von Noxen (Rauchen, Verkehr, Ozon,)
- * Beratung zur Verhaltensveränderung bei Allergenexposition (z.B. Pollenflug u. Sport, Bepflanzung, Hyposensibilisierung)
- * Hitzeschutz bei Kindern (KiTa, Schulhöfe, Klassenzimmer): Hitzeschutzpläne
- * Feuchtigkeit: Schimmel.....
- * Awareness, Diagnose und konsequente Therapie bei Lungenerkrankung

https://www.klinikum.uni-muenchen.de/Bildungsmodule-Aerzte/download/de/bildungsmodule-aerzte/DGKJ-Kongress/DGKJ-2021---Lob-Corzilius.pdf

Berlin: Potsdamer Platz

Dosieraerosole mit FKW als Treibmittel

- Treibhausgaseffekt: Global Warming Potential = GWP
- Kohlendioxid als CO2 hat ein GWP von 1

- FKW, z.B Flurane als Treibmittel in Dosieraerosolen (DA), exponentiell höhere GWPs, in CO2-Äquivalent angegeben
- Z.B: **Norfluran** (HFA 134) = sehr häufig eingesetzt GWP von **1.430** (Verweilzeit 13.4 Jahre)
- **Apafluran** (HFA-227ea) = seltener eingesetzt GWP von 3.220 (Verweilzeit ca. 27 Jahre)

DAHER BEVORZUGT PULVERINHALATOR

(wenn vom Patient her möglich)

Videos zur Anwendung: Dt. Atemwegsliga

https://www.atemwegsliga.de/richtig-inhalieren.html

KLINIKUM

DER UNIVERSITÄT MÜNCHEN

S2k-Leitlinie zu Inhalativa

publiziert bei: AWMF onlin

Klimabewusste Verordnung von Inhalativa

S2k-Leitlinie

AWMF-Register-Nr. 053-059

Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin e.V.

Tabelle 2: Vergleich Dosieraerosol zu Pulverinhalator

Inhaler	Dosieraerosol (DA)	Pulverinhalator (DPI)
Auslösung	Synchronisation von Sprühstoß- auslösung und Inhalation erforderlich (Ausnahme: atemzug-getriggerte Systeme)	Keine Synchronisation erforderlich (im Einzelfall Atemfluss-getriggert)
Atemmanöver*	Langsamer und tiefer Atemzug**	Langsamer und tiefer Atemzug, Gleichmäßiges, kräftiges Einatmen**
Spacer	Möglich	Nicht möglich
Zähler	Manchmal	Fast immer
Klimaschaden durch Treibmittel	Sehr hoch	Gering

Für Kinder ab ca. 6 Jahren möglich Gute Schulung wichtig

Auch in GINA 2023: www.gina.com Lancet, 2023, 403, 1012-1016

KLINIKUM DER UNIVERSITÄT MÜNCHEN

Maßnahmen – Was können wir tun?

- Klimasensibler Umgang mit Narkosegasen
- Keine Narkosen mit Desfluran, Sevofluran, Hydrofluorether
- Keine Narkosegase ohne Filtrierung der Schadstoffe

https://www.bund-berlin.de/fileadmin/berlin/publikationen/Klimaschutz-pdf/Fact-Sheet_Narkosegase_und_Klimaschutz_Update.pdf

Wussten Sie schon, dass....

- in Deutschland jährlich 7 Millionen Vollnarkosen mit Narkosegasen durchgeführt werden
- die klimaschädlichen Emissionen einer 7-stündigen OP mit Desfluran etwa einer Autofahrt von fast 8.000 Kilometern entsprechen
- eine Gasnarkose durchschnittlich 60 Kilogramm CO₂-Äquivalente verursacht
- Narkosegase klimaschädlicher wirken als CO₂ (Global Warming Potential/GWP100)

» Desfluran: 2.540-Fach
 » Isofluran: 510-Fach
 » Sevofluran:130-Fach
 » Lachgas: 300-Fach

- Narkosegase bis zu 35 Prozent der Emissionen einer Klinik verursachen
- Narkosegase viel länger als die Narkose dauert in der Atmosphäre verweilen

Desfluran: bis 14 Jahre

» Isofluran und Sevofluran: 2 bis 6 Jahre

» Lachgas: bis 114 Jahre

KLINIKUM

Zusammenfassung

Umweltbelastung, Klimaveränderungen und Lungengesundheit

Maßnahmen

- Exposition zu Noxen
- Temperaturerhöhung, Trockenheit, Hitze
- ➤ Überflutungen, Brände

Auswirkungen:

- Veränderungen der Allergenexposition
- Atemwegserkrankungen:
- * Asthma, Exazerbationen, Gewitterasthma
- * Husten, Bronchitiden, u.a. Platanenhusten
- * COPD

- Politische Maßnahmen gegen Umweltschadstoffe / Klimaveränderung
- Persönliche Optionen zur Unterstützung der Lungengesundheit von Kindern:
- * Beratung zur Vermeidung von Noxen (Rauchen, Verkehr, Ozon,)
- * Beratung zur Verhaltensveränderung bei Allergenexposition (z.B. Pollenflug u. Sport, Bepflanzung, Hyposensibilisierung)
- * Hitzeschutz bei Kindern (KiTa, Schulhöfe, Klassenzimmer): Hitzeschutzpläne
- * Konsequente Therapie: bei Lungenerkrankung